Willis Eschenbach looks at temperature as recorded in stalactites. In Which I Go Spelunking.
The paper uses “speleothems” to estimate past climate conditions. Speleothems are secondary mineral deposits formed in caves. Stalactites and stalgmites are speleothems, and they come in a wide variety of sizes and shapes.
....
The speleothems give us a record of what is called the “delta oxygen 18″ (∂18O) value. This value is related to the temperature. The paper does not give the associated temperature values, so I converted them using the relationship described here as:This is based on the average d[delta]18O/dT relation in modern precipitation (~0.6‰ °C-1), and the water-calcite fractionation that accompanies speleothem deposition (~-0.24‰ °C-1).Decoded, this means that the change in temperature is equal to the change in ∂18O divided by (0.6 – 0.24), or ∂18O/0.36. Using that relationship, I calculated the temperatures from the various speleothems, and graphed them all with no further adjustment.
....
This has improved the accuracy of the reconstruction. This is shown by the greater vertical range of the Gaussian average line.
So, what does all this mean? Heck, I don’t know, I’m investigating, not drawing conclusions. A few comments, in no particular order:
• As is shown in the Greenland ice core records, we are currently at the cold end of the Holocene (the current interglacial).
• Recent phenomena (Roman Warm Period, Medieval Warm Period, Current Warm Period) are scarcely visible at this scale. So much for the “uprecedented” nature of the recent rise.
• The polar bears are not in any danger from the recent rise.
• What’s up with the big jump and drop about 12000 years ago? I have not seen that in the ice core records, but it is present in these speleothem records from around the planet. [Update] A number of people have pointed out that this is almost certainly the “Younger Dryas” event. I hadn’t noticed it in the Vostok record, but a closeup of that record shows it.
• The amount of the temperature change depends on the coefficient used to translate from d18O to temperature. So the numbers are likely in the right range, but may be somewhat too large or too small.
Anyhow, that’s my thoughts about what I’ve found out, I welcome yours. I continue with the investigation. It strikes me that I may be able to adjust the conversion factor (d18O/T) to see if that improves the fit of the data … should be interesting. Onwards …
No comments:
Post a Comment